Thursday, February 3, 2011

Theory and Practice of Uncertain Programming







Contents
Preface ix
1 Mathematical Programming 1
1.1 Single-Objective Programming . . . . . . . . . . . . . . . . . 1
1.2 Multiobjective Programming . . . . . . . . . . . . . . . . . . 3
1.3 Goal Programming . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . 6
1.5 Multilevel Programming . . . . . . . . . . . . . . . . . . . . . 7
2 Genetic Algorithms 9
2.1 Representation Structure . . . . . . . . . . . . . . . . . . . . 10
2.2 Handling Constraints . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Initialization Process . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Evaluation Function . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Selection Process . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Crossover Operation . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Mutation Operation . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 General Procedure . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 14
3 Neural Networks 19
3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Function Approximation . . . . . . . . . . . . . . . . . . . . 21
3.3 Neuron Number Determination . . . . . . . . . . . . . . . . . 21
3.4 Backpropagation Algorithm . . . . . . . . . . . . . . . . . . . 22
3.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 23
4 Stochastic Programming 25
4.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Expected Value Model . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Chance-Constrained Programming . . . . . . . . . . . . . . . 32
4.4 Dependent-Chance Programming . . . . . . . . . . . . . . . . 38
4.5 Hybrid Intelligent Algorithm . . . . . . . . . . . . . . . . . . 45
4.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 48
5 Fuzzy Programming 53
5.1 Fuzzy Variables . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Expected Value Model . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Chance-Constrained Programming . . . . . . . . . . . . . . . 61
5.4 Dependent-Chance Programming . . . . . . . . . . . . . . . . 65
5.5 Hybrid Intelligent Algorithm . . . . . . . . . . . . . . . . . . 68
5.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 70
6 Hybrid Programming 75
6.1 Hybrid Variables . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Expected Value Model . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Chance-Constrained Programming . . . . . . . . . . . . . . . 85
6.4 Dependent-Chance Programming . . . . . . . . . . . . . . . . 87
6.5 Hybrid Intelligent Algorithm . . . . . . . . . . . . . . . . . . 89
6.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 92
7 System Reliability Design 97
7.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3 Fuzzy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8 Project Scheduling Problem 107
8.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . 108
8.3 Fuzzy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.4 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9 Vehicle Routing Problem 115
9.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 116
9.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . 117
9.3 Fuzzy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.4 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10 Facility Location Problem 125
10.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 125
10.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . 126
10.3 Fuzzy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.4 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11 Machine Scheduling Problem 133
11.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 133
11.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . 134
11.3 Fuzzy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.4 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12 Uncertain Programming 145
12.1 Uncertain Variables . . . . . . . . . . . . . . . . . . . . . . . 145
12.2 Expected Value Model . . . . . . . . . . . . . . . . . . . . . . 147
12.3 Chance-Constrained Programming . . . . . . . . . . . . . . . 148
12.4 Dependent-Chance Programming . . . . . . . . . . . . . . . . 151
12.5 Uncertain Dynamic Programming . . . . . . . . . . . . . . . 152
12.6 Uncertain Multilevel Programming . . . . . . . . . . . . . . . 153
12.7 Ψ Graph of Uncertain Programming . . . . . . . . . . . . . . 157
Bibliography 159
List of Acronyms 179
List of Frequently Used Symbols 180
Index 181

Another Programming Language Books
Another Software Engineering Books
Download

No comments:

Post a Comment

Related Posts with Thumbnails

Put Your Ads Here!