In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Thursday, February 3, 2011
Theory and Practice of Uncertain Programming
Contents
Preface ix
1 Mathematical Programming 1
1.1 Single-Objective Programming . . . . . . . . . . . . . . . . . 1
1.2 Multiobjective Programming . . . . . . . . . . . . . . . . . . 3
1.3 Goal Programming . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . 6
1.5 Multilevel Programming . . . . . . . . . . . . . . . . . . . . . 7
2 Genetic Algorithms 9
2.1 Representation Structure . . . . . . . . . . . . . . . . . . . . 10
2.2 Handling Constraints . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Initialization Process . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Evaluation Function . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Selection Process . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Crossover Operation . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Mutation Operation . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 General Procedure . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 14
3 Neural Networks 19
3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Function Approximation . . . . . . . . . . . . . . . . . . . . 21
3.3 Neuron Number Determination . . . . . . . . . . . . . . . . . 21
3.4 Backpropagation Algorithm . . . . . . . . . . . . . . . . . . . 22
3.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 23
4 Stochastic Programming 25
4.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Expected Value Model . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Chance-Constrained Programming . . . . . . . . . . . . . . . 32
4.4 Dependent-Chance Programming . . . . . . . . . . . . . . . . 38
4.5 Hybrid Intelligent Algorithm . . . . . . . . . . . . . . . . . . 45
4.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 48
5 Fuzzy Programming 53
5.1 Fuzzy Variables . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Expected Value Model . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Chance-Constrained Programming . . . . . . . . . . . . . . . 61
5.4 Dependent-Chance Programming . . . . . . . . . . . . . . . . 65
5.5 Hybrid Intelligent Algorithm . . . . . . . . . . . . . . . . . . 68
5.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 70
6 Hybrid Programming 75
6.1 Hybrid Variables . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Expected Value Model . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Chance-Constrained Programming . . . . . . . . . . . . . . . 85
6.4 Dependent-Chance Programming . . . . . . . . . . . . . . . . 87
6.5 Hybrid Intelligent Algorithm . . . . . . . . . . . . . . . . . . 89
6.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 92
7 System Reliability Design 97
7.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3 Fuzzy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8 Project Scheduling Problem 107
8.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . 108
8.3 Fuzzy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.4 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9 Vehicle Routing Problem 115
9.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 116
9.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . 117
9.3 Fuzzy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.4 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10 Facility Location Problem 125
10.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 125
10.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . 126
10.3 Fuzzy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.4 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11 Machine Scheduling Problem 133
11.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 133
11.2 Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . 134
11.3 Fuzzy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.4 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12 Uncertain Programming 145
12.1 Uncertain Variables . . . . . . . . . . . . . . . . . . . . . . . 145
12.2 Expected Value Model . . . . . . . . . . . . . . . . . . . . . . 147
12.3 Chance-Constrained Programming . . . . . . . . . . . . . . . 148
12.4 Dependent-Chance Programming . . . . . . . . . . . . . . . . 151
12.5 Uncertain Dynamic Programming . . . . . . . . . . . . . . . 152
12.6 Uncertain Multilevel Programming . . . . . . . . . . . . . . . 153
12.7 Ψ Graph of Uncertain Programming . . . . . . . . . . . . . . 157
Bibliography 159
List of Acronyms 179
List of Frequently Used Symbols 180
Index 181
Another Programming Language Books
Another Software Engineering Books
Download
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment