In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Sunday, January 30, 2011
Linear Regression Analysis Theory and Computing
Contents
Preface v
List of Figures xv
List of Tables xvii
1. Introduction 1
1.1 Regression Model . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals of Regression Analysis . . . . . . . . . . . . . . . . 4
1.3 Statistical Computing in Regression Analysis . . . . . . . 5
2. Simple Linear Regression 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Least Squares Estimation . . . . . . . . . . . . . . . . . . 10
2.3 Statistical Properties of the Least Squares Estimation . . 13
2.4 Maximum Likelihood Estimation . . . . . . . . . . . . . . 18
2.5 Confidence Interval on Regression Mean and Regression
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Statistical Inference on Regression Parameters . . . . . . 21
2.7 Residual Analysis and Model Diagnosis . . . . . . . . . . 25
2.8 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3. Multiple Linear Regression 41
3.1 Vector Space and Projection . . . . . . . . . . . . . . . . . 41
3.1.1 Vector Space . . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Linearly Independent Vectors . . . . . . . . . . . 44
3.1.3 Dot Product and Projection . . . . . . . . . . . . 44
3.2 Matrix Form of Multiple Linear Regression . . . . . . . . 48
3.3 Quadratic Form of Random Variables . . . . . . . . . . . 49
3.4 Idempotent Matrices . . . . . . . . . . . . . . . . . . . . . 50
3.5 Multivariate Normal Distribution . . . . . . . . . . . . . . 54
3.6 Quadratic Form of the Multivariate Normal Variables . . 56
3.7 Least Squares Estimates of the Multiple Regression
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.8 Matrix Form of the Simple Linear Regression . . . . . . . 62
3.9 Test for Full Model and Reduced Model . . . . . . . . . . 64
3.10 Test for General Linear Hypothesis . . . . . . . . . . . . . 66
3.11 The Least Squares Estimates of Multiple Regression
Parameters Under Linear Restrictions . . . . . . . . . . . 67
3.12 Confidence Intervals of Mean and Prediction in Multiple
Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.13 Simultaneous Test for Regression Parameters . . . . . . . 70
3.14 Bonferoni Confidence Region for Regression Parameters . 71
3.15 Interaction and Confounding . . . . . . . . . . . . . . . . 72
3.15.1 Interaction . . . . . . . . . . . . . . . . . . . . . . 73
3.15.2 Confounding . . . . . . . . . . . . . . . . . . . . . 75
3.16 Regression with Dummy Variables . . . . . . . . . . . . . 77
3.17 Collinearity in Multiple Linear Regression . . . . . . . . . 81
3.17.1 Collinearity . . . . . . . . . . . . . . . . . . . . . . 81
3.17.2 Variance Inflation . . . . . . . . . . . . . . . . . . 85
3.18 Linear Model in Centered Form . . . . . . . . . . . . . . . 87
3.19 Numerical Computation of LSE via QR Decomposition . 92
3.19.1 Orthogonalization . . . . . . . . . . . . . . . . . . 92
3.19.2 QR Decomposition and LSE . . . . . . . . . . . . 94
3.20 Analysis of Regression Residual . . . . . . . . . . . . . . . 96
3.20.1 Purpose of the Residual Analysis . . . . . . . . . 96
3.20.2 Residual Plot . . . . . . . . . . . . . . . . . . . . 97
3.20.3 Studentized Residuals . . . . . . . . . . . . . . . . 103
3.20.4 PRESS Residual . . . . . . . . . . . . . . . . . . . 103
3.20.5 Identify Outlier Using PRESS Residual . . . . . . 106
3.20.6 Test for Mean Shift Outlier . . . . . . . . . . . . . 108
3.21 Check for Normality of the Eror Term in Multiple
Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.22 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4. Detection of Outliers and Influential Observations
in Multiple Linear Regression 129
4.1 Model Diagnosis for Multiple Linear Regression . . . . . . 130
4.1.1 Simple Criteria for Model Comparison . . . . . . 130
4.1.2 Bias in Eror Estimate from Under-specified Model 131
4.1.3 Cross Validation . . . . . . . . . . . . . . . . . . . 132
4.2 Detection of Outliers in Multiple Linear Regression . . . . 133
4.3 Detection of Influential Observations in Multiple Linear
Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.3.1 Influential Observation . . . . . . . . . . . . . . . 134
4.3.2 Notes on Outlier and Influential Observation . . . 136
4.3.3 Residual Mean Square Eror for Over-fitted
Regression Model . . . . . . . . . . . . . . . . . . 137
4.4 Test for Mean-shift Outliers . . . . . . . . . . . . . . . . . 139
4.5 Graphical Display of Regression Diagnosis . . . . . . . . . 142
4.5.1 Partial Residual Plot . . . . . . . . . . . . . . . . 142
4.5.2 Component-plus-residual Plot . . . . . . . . . . . 146
4.5.3 Augmented Partial Residual Plot . . . . . . . . . 147
4.6 Test for Inferential Observations . . . . . . . . . . . . . . 147
4.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5. Model Selection 157
5.1 Effect of Underfitting and Overfitting . . . . . . . . . . . 157
5.2 All Possible Regressions . . . . . . . . . . . . . . . . . . . 165
5.2.1 Some Naive Criteria . . . . . . . . . . . . . . . . 165
5.2.2 PRESS and GCV . . . . . . . . . . . . . . . . . . 166
5.2.3 Mallow’s C P . . . . . . . . . . . . . . . . . . . . . 167
5.2.4 AIC, AIC C , and BIC . . . . . . . . . . . . . . . . 169
5.3 Stepwise Selection . . . . . . . . . . . . . . . . . . . . . . 171
5.3.1 Backward Elimination . . . . . . . . . . . . . . . . 171
5.3.2 Forward Addition . . . . . . . . . . . . . . . . . . 172
5.3.3 Stepwise Search . . . . . . . . . . . . . . . . . . . 172
5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.5 Other Related Issues . . . . . . . . . . . . . . . . . . . . 179
5.5.1 Variance Iportance or Relevance . . . . . . . . 180
5.5.2 PCA and SIR . . . . . . . . . . . . . . . . . . . . 186
6. Model Diagnostics 195
6.1 Test Heteroscedasticity . . . . . . . . . . . . . . . . . . . . 197
6.1.1 Heteroscedasticity . . . . . . . . . . . . . . . . . . 197
6.1.2 Likelihood Ratio Test, Wald, and Lagrange Multi-
plier Test . . . . . . . . . . . . . . . . . . . . . . . 198
6.1.3 Tests for Heteroscedasticity . . . . . . . . . . . . . 201
6.2 Detection of Regression Functional Form . . . . . . . . . . 204
6.2.1 Box-Cox Power Transformation . . . . . . . . . . 205
6.2.2 Additive Models . . . . . . . . . . . . . . . . . . . 207
6.2.3 ACE and AVAS . . . . . . . . . . . . . . . . . . . 210
6.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . 211
7. Extensions of Least Squares 219
7.1 Non-Full-Rank Linear Regression Models . . . . . . . . . 219
7.1.1 Generalized Inverse . . . . . . . . . . . . . . . . . 221
7.1.2 Statistical Inference on Null-Full-Rank Regression
Models . . . . . . . . . . . . . . . . . . . . . . . . 223
7.2 Generalized Least Squares . . . . . . . . . . . . . . . . . . 229
7.2.1 Estimation of (β, σ 2 ) . . . . . . . . . . . . . . . . 230
7.2.2 Statistical Inference . . . . . . . . . . . . . . . . . 231
7.2.3 Misspecification of the Er Variance Structure . 232
7.2.4 Typical Eror Variance Structures . . . . . . . . 233
7.2.5 Example . . . . . . . . . . . . . . . . . . . . . . . 236
7.3 Ridge Regression and LASSO . . . . . . . . . . . . . . . . 238
7.3.1 Ridge Shrinkage Estimator . . . . . . . . . . . . . 239
7.3.2 Connection with PCA . . . . . . . . . . . . . . . 243
7.3.3 LASSO and Other Extensions . . . . . . . . . . . 246
7.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . 250
7.4 Parametric Nonlinear Regression . . . . . . . . . . . . . . 259
7.4.1 Least Squares Estimation in Nonlinear Regression 261
7.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . 263
8. Generalized Linear Models 269
8.1 Introduction: A Motivating Example . . . . . . . . . . . . 269
8.2 Components of GLM . . . . . . . . . . . . . . . . . . . . 272
8.2.1 Exponential Family . . . . . . . . . . . . . . . . . 272
8.2.2 Linear Predictor and Link Functions . . . . . . . 273
8.3 Maximum Likelihood Estimation of GLM . . . . . . . . . 274
8.3.1 Likelihood Equations . . . . . . . . . . . . . . . . 274
8.3.2 Fisher’s Information Matrix . . . . . . . . . . . . 275
8.3.3 Optimization of the Likelihood . . . . . . . . . . . 276
8.4 Statistical Inference and Other Issues in GLM . . . . . . 278
8.4.1 Wald, Likelihood Ratio, and Score Test . . . . . 278
8.4.2 Other Model Fitting Issues . . . . . . . . . . . . 281
8.5 Logistic Regression for Binary Data . . . . . . . . . . . . 282
8.5.1 Interpreting the Logistic Model . . . . . . . . . . 282
8.5.2 Estimation of the Logistic Model . . . . . . . . . 284
8.5.3 Example . . . . . . . . . . . . . . . . . . . . . . . 285
8.6 Poisson Regression for Count Data . . . . . . . . . . . . 287
8.6.1 The Loglinear Model . . . . . . . . . . . . . . . . 287
8.6.2 Example . . . . . . . . . . . . . . . . . . . . . . . 288
9. Bayesian Linear Regression 297
9.1 Bayesian Linear Models . . . . . . . . . . . . . . . . . . . 297
9.1.1 Bayesian Inference in General . . . . . . . . . . . 297
9.1.2 Conjugate Normal-Gamma Priors . . . . . . . . . 299
9.1.3 Inference in Bayesian Linear Model . . . . . . . . 302
9.1.4 Bayesian Inference via MCMC . . . . . . . . . . . 303
9.1.5 Prediction . . . . . . . . . . . . . . . . . . . . . . 306
9.1.6 Example . . . . . . . . . . . . . . . . . . . . . . . 307
9.2 Bayesian Model Averaging . . . . . . . . . . . . . . . . . 309
Bibliography 317
Index 325
Another Time Series Books
Download
Subscribe to:
Post Comments (Atom)
Good job,you are amazing.I think you have spent a lot of time to collect these useful information,it's great.In your post I happen to find some important info that I was looking for so long,thank you very much.
ReplyDeletejava barcode read plugin