Tuesday, April 3, 2012

Dynamics in One Complex Variable






Intro du tory Le tures
(Partially revised version of 9-5-91)
John Milnor
Institute for Mathemati al S ien es, SUNY, Stony Bro ok NY
Table of Contents.
Prefa e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chronologi al Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Riemann Surfa es.
1. Simply Conne ted Surfa es . . . . . . . . . . . . . . . . . . . . (9 pages)
2. The Universal Covering, Montel’s Theorem . . . . . . . . . . . . . . . (5)
The Julia Set.
3. Fatou and Julia: Dynami s on the Riemann Sphere . . . . . . . . . . . (9)
4. Dynami s on Other Riemann Surfa es . . . . . . . . . . . . . . . . . (6)
5. Smo oth Julia Sets . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Lo al Fixed Point Theory.
6. Attra ting and Rep elling Fixed Points . . . . . . . . . . . . . . . . . (7)
7. Parab oli Fixed Points: the Leau-Fatou Flower . . . . . . . . . . . . . (8)
8. Cremer Points and Siegel Disks . . . . . . . . . . . . . . . . . . . . (11)
Global Fixed Point Theory.
9. The Holomorphi Fixed Point Formula . . . . . . . . . . . . . . . . . (3)
10. Most Perio di Orbits Rep el . . . . . . . . . . . . . . . . . . . . . . (3)
11. Rep elling Cy les are Dense in J . . . . . . . . . . . . . . . . . . . (5)
Stru ture of the Fatou Set.
12. Herman Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
13. The Sullivan Classi ation of Fatou Comp onents . . . . . . . . . . . . (4)
14. Sub-hyp erb oli and hyp erb oli Maps . . . . . . . . . . . . . . . . . . (7)
Carath eo dory Theory.
15. Prime Ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)
16. Lo al Conne tivity . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Polynomial Maps.
17. The Filled Julia Set K . . . . . . . . . . . . . . . . . . . . . . . (4)
18. External Rays and Perio di Points . . . . . . . . . . . . . . . . . . . (8)
App endix A. Theorems from Classi al Analysis . . . . . . . . . . . . . . . . (4)
App endix B. Length-Area-Mo dulus Inequalities . . . . . . . . . . . . . . . . (6)
App endix C. Continued Fra tions . . . . . . . . . . . . . . . . . . . . . . (5)
App endix D. Remarks on Two Complex Variables . . . . . . . . . . . . . . . (2)
App endix E. Bran hed Coverings and Orbifolds . . . . . . . . . . . . . . . . (4)
App endix F. Parameter Spa e . . . . . . . . . . . . . . . . . . . . . . . (3)
App endix G. Remarks on Computer Graphi s . . . . . . . . . . . . . . . . (2)
Referen es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)


Differentiation under the integral sign - Wikipedia, Differential and Integral Calculus, Differential and Integral Equations, differentiation and integration, differential equations, integrals, integration calculus, calculus integration, integral equations, calculus integral, integration and differentiation



Mathematics For Computer Science

Concrete Mathematics - A Foundation for Computer Science
Other Mathematics Books
Download here

No comments:

Post a Comment

Related Posts with Thumbnails

Put Your Ads Here!