In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Friday, December 30, 2011
Introduction to Modern Portfolio Optimization With NUOPT and S-PLUS
Contents
Preface ...............................................................................................................vii
List of Code Examples.....................................................................................xix
1 Linear and Quadratic Programming.....................................................1
1.1 Linear Programming: Testing for Arbitrage..............................................1
1.2 Quadratic Programming: Balancing Risk and Return ...............................6
1.3 Dual Variables and the Impact of Constraints.........................................17
1.4 Analysis of the Efficient Frontier ............................................................24
Exercises..........................................................................................................30
Endnotes ..........................................................................................................32
2 General Optimization with SIMPLE .....................................................35
2.1 Indexing Parameters and Variables .........................................................35
2.2 Function Optimization.............................................................................45
2.3 Maximum Likelihood Optimization........................................................50
2.4 Utility Optimization ................................................................................54
2.5 Multistage Stochastic Programming........................................................61
2.6 Optimization within S-PLUS ....................................................................69
Exercises..........................................................................................................79
Endnotes ..........................................................................................................80
3 Advanced Issues in Mean-Variance Optimization .............................81
3.1 Nonstandard Implementations.................................................................81
3.2 Portfolio Construction and Mixed-Integer Programming........................90
3.3 Transaction Costs ....................................................................................98
Exercises........................................................................................................106
Endnotes ........................................................................................................108
4 Resampling and Portfolio Choice.......................................................109
4.1 Portfolio Resampling.............................................................................109
4.2 Resampling Long-Only Portfolios ........................................................114
4.3 Introduction of a Special Lottery Ticket ...............................................115
4.4 Distribution of Portfolio Weights..........................................................120
4.5 Theoretical Deficiencies of Portfolio Construction via Resampling .....126
4.6 Bootstrap Estimation of Error in Risk-Return Ratios............................129
Exercises........................................................................................................136
Endnotes ........................................................................................................139
5 Scenario Optimization: Addressing Non-normality.........................141
5.1 Scenario Optimization...........................................................................141
5.2 Mean Absolute Deviation......................................................................153
5.3 Semi-variance and Generalized Semi-variance Optimization ...............158
5.4 Probability-Based Risk/Return Measures..............................................164
5.5 Minimum Regret ...................................................................................170
5.6 Conditional Value-at-Risk.....................................................................174
5.7 CDO Valuation using Scenario Optimization .......................................189
Exercises........................................................................................................193
Endnotes ........................................................................................................194
6 Robust Statistical Methods for Portfolio Construction....................195
6.1 Outliers and Non-normal Returns .........................................................195
6.2 Robust Statistics versus Classical Statistics ..........................................200
6.3 Robust Estimates of Mean Returns .......................................................202
6.4 Robust Estimates of Volatility ..............................................................209
6.5 Robust Betas..........................................................................................218
6.6 Robust Correlations and Covariances ...................................................221
6.7 Robust Distances for Determining Normal Times versus
Hectic Times .........................................................................................226
6.8 Robust Covariances and Distances with Different Return Histories.....233
6.9 Robust Portfolio Optimization ..............................................................238
6.10 Conditional Value-at-Risk Frontiers: Classical and Robust..................261
6.11 Influence Functions for Portfolios.........................................................276
Exercises........................................................................................................294
Endnotes ........................................................................................................297
7 Bayes Methods .....................................................................................299
7.1 The Bayesian Modeling Paradigm ........................................................299
7.2 Bayes Models for the Mean and Volatility of Returns ..........................303
7.3 Bayes Linear Regression Models ..........................................................346
7.4 Black-Litterman Models .......................................................................359
7.5 Bayes-Stein Estimators of Mean Returns..............................................375
7.6 Appendix 7A: Inverse Chi-Squared Distributions.................................380
7.7 Appendix 7B: Posterior Distributions for Normal Likelihood
Conjugate Priors....................................................................................384
7.8 Appendix 7C: Derivation of the Posterior for Jorion’s
Empirical Bayes Estimate .....................................................................384
Exercises........................................................................................................387
Endnotes ........................................................................................................389
Bibliography....................................................................................................393
Index ................................................................................................................401
Another Optimization Books
Download
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment