In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Saturday, January 15, 2011
Time Series Analysis and Its Applications: With R Examples
Contents
1 Characteristics of Time Series 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Nature of Time Series Data . . . . . . . . . . . . . . . . . 4
1.3 Time Series Statistical Models . . . . . . . . . . . . . . . . . . . 11
1.4 Measures of Dependence: Autocorrelation
and Cross-Correlation . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Stationary Time Series . . . . . . . . . . . . . . . . . . . . . . . 23
1.6 Estimation of Correlation . . . . . . . . . . . . . . . . . . . . . 29
1.7 Vector-Valued andMultidimensional Series . . . . . . . . . . . 34
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2 Time Series Regression and Exploratory Data Analysis 48
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2 Classical Regression in the Time Series Context . . . . . . . . . 49
2.3 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . 57
2.4 Smoothing in the Time Series Context . . . . . . . . . . . . . . 71
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3 ARIMA Models 84
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2 Autoregressive Moving Average Models . . . . . . . . . . . . . 85
3.3 Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . 98
3.4 Autocorrelation and Partial Autocorrelation Functions . . . . . 103
3.5 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.6 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.7 Integrated Models for Nonstationary Data . . . . . . . . . . . . 140
3.8 Building ARIMA Models . . . . . . . . . . . . . . . . . . . . . 143
3.9 Multiplicative Seasonal ARIMA Models . . . . . . . . . . . . . 154
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4 Spectral Analysis and Filtering 174
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.2 Cyclical Behavior and Periodicity . . . . . . . . . . . . . . . . . 176
4.3 The Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . 181
4.4 Periodogramand Discrete Fourier Transform . . . . . . . . . . 187
4.5 Nonparametric Spectral Estimation . . . . . . . . . . . . . . . . 197
4.6 Multiple Series and Cross-Spectra . . . . . . . . . . . . . . . . . 215
4.7 Linear Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
4.8 Parametric Spectral Estimation . . . . . . . . . . . . . . . . . . 228
4.9 Dynamic Fourier Analysis andWavelets . . . . . . . . . . . . . 232
4.10 Lagged Regression Models . . . . . . . . . . . . . . . . . . . . 245
4.11 Signal Extraction and Optimum Filtering . . . . . . . . . . . . 251
4.12 Spectral Analysis ofMultidimensional Series . . . . . . . . . . . 256
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
5 Additional Time Domain Topics 271
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
5.2 LongMemory ARMA and Fractional Differencing . . . . . . . 271
5.3 GARCHModels . . . . . . . . . . . . . . . . . . . . . . . . . . 280
5.4 ThresholdModels . . . . . . . . . . . . . . . . . . . . . . . . . . 289
5.5 Regression with Autocorrelated Errors . . . . . . . . . . . . . . 293
5.6 Lagged Regression: Transfer Function Modeling . . . . . . . . . 295
5.7 Multivariate ARMAXModels . . . . . . . . . . . . . . . . . . . 302
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
6 State-Space Models 324
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
6.2 Filtering, Smoothing, and Forecasting . . . . . . . . . . . . . . 330
6.3 MaximumLikelihood Estimation . . . . . . . . . . . . . . . . . 339
6.4 Missing Data Modifications . . . . . . . . . . . . . . . . . . . . 348
6.5 StructuralModels: Signal Extraction and Forecasting . . . . . 352
6.6 ARMAX Models in State-Space Form . . . . . . . . . . . . . . 355
6.7 Bootstrapping State-Space Models . . . . . . . . . . . . . . . . 357
6.8 Dynamic LinearModels with Switching . . . . . . . . . . . . . 362
6.9 Nonlinear and Non-normal State-Space
Models UsingMonte CarloMethods . . . . . . . . . . . . . . . 376
6.10 Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . . . . 388
6.11 State-Space and ARMAX Models for
Longitudinal Data Analysis . . . . . . . . . . . . . . . . . . . . 394
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
7 Statistical Methods in the Frequency Domain 412
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
7.2 SpectralMatrices and Likelihood Functions . . . . . . . . . . . 416
7.3 Regression for Jointly Stationary Series . . . . . . . . . . . . . 417
7.4 Regression with Deterministic Inputs . . . . . . . . . . . . . . . 426
7.5 Random Coefficient Regression . . . . . . . . . . . . . . . . . . 434
7.6 Analysis of Designed Experiments . . . . . . . . . . . . . . . . 438
7.7 Discrimination and Cluster Analysis . . . . . . . . . . . . . . . 449
7.8 Principal Components and Factor Analysis . . . . . . . . . . . 464
7.9 The Spectral Envelope . . . . . . . . . . . . . . . . . . . . . . . 479
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Appendix A: Large Sample Theory 501
A.1 ConvergenceModes . . . . . . . . . . . . . . . . . . . . . . . . 501
A.2 Central Limit Theorems . . . . . . . . . . . . . . . . . . . . . . 509
A.3 TheMean and Autocorrelation Functions . . . . . . . . . . . . 513
Appendix B: Time Domain Theory 522
B.1 Hilbert Spaces and the Projection Theorem . . . . . . . . . . . 522
B.2 Causal Conditions for ARMAModels . . . . . . . . . . . . . . 526
B.3 Large Sample Distribution of the AR(p)
Conditional Least Squares Estimators . . . . . . . . . . . . . . 528
B.4 TheWold Decomposition . . . . . . . . . . . . . . . . . . . . . 532
Appendix C: Spectral Domain Theory 534
C.1 Spectral Representation Theorem . . . . . . . . . . . . . . . . . 534
C.2 Large Sample Distribution of the DFT and
Smoothed Periodogram . . . . . . . . . . . . . . . . . . . . . . 539
C.3 The ComplexMultivariate Normal Distribution . . . . . . . . . 550
References 555
Index 569
Another Time Series Books
Another Statistic Books
Download
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment