In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Wednesday, December 15, 2010
Mathematical Analysis Of Urban Spatial Networks
Contents
1 Complex Networks of Urban Environments . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Paradigm of a City . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Cities and Humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Facing the Challenges of Urbanization . . . . . . . . . . . . . . . . . . 6
1.1.3 The Dramatis Personæ. How Should a City Look? . . . . . . . . 9
1.1.4 Cities Size Distribution and Zipf’s Law . . . . . . . . . . . . . . . . . . 15
1.1.5 European Cities: Between Past and Future . . . . . . . . . . . . . . . 17
1.2 Maps of Space and Urban Environments . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.1 Object-Based Representations of Urban Environments.
Primary Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 Cognitive Maps of Space in the Brain Network . . . . . . . . . . . 19
1.2.3 Space-Based Representations of Urban
Environments. Least Line Graphs . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.4 Time-based Representations of Urban Environments . . . . . . . 24
1.2.5 How Did We Map Urban Environments? . . . . . . . . . . . . . . . . 26
1.3 Structure of City Spatial Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.1 Matrix Representation of a Graph . . . . . . . . . . . . . . . . . . . . . . 29
1.3.2 Shortest Paths in a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.3 Degree Statistics of Urban Spatial Networks . . . . . . . . . . . . . . 32
1.3.4 Integration Statistics of Urban Spatial Networks . . . . . . . . . . 35
1.3.5 Scaling and Universality: Between Zipf and Matthew.
Morphological Definition of a City . . . . . . . . . . . . . . . . . . . . . 37
1.3.6 Cameo Principle of Scale-Free Urban Developments . . . . . . 40
1.3.7 Trade-Off Models of Urban Sprawl Creation . . . . . . . . . . . . . 42
1.4 Comparative Study of Cities as Complex Networks . . . . . . . . . . . . . . 46
1.4.1 Urban Structure Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.4.2 Cumulative Urban Structure Matrix . . . . . . . . . . . . . . . . . . . . . 49
1.4.3 Structural Distance Between Cities . . . . . . . . . . . . . . . . . . . . . 52
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2 Wayfinding and Affine Representations of Urban Environments . . . . . 55
2.1 From Mental Perspectives to the Affine Representation of Space . . . 56
2.2 Undirected Graphs and Linear Operators Defined on Them . . . . . . . . 58
2.2.1 Automorphisms and Linear Functions
of the Adjacency Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.2 Measures and Dirichlet Forms . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3 Random Walks Defined on Undirected Graphs . . . . . . . . . . . . . . . . . . 62
2.3.1 Graphs as Discrete time Dynamical Systems . . . . . . . . . . . . . 63
2.3.2 Transition Probabilities and Generating Functions . . . . . . . . . 63
2.3.3 Stationary Distribution of Random Walks . . . . . . . . . . . . . . . . 64
2.3.4 Continuous Time Markov Jump Process . . . . . . . . . . . . . . . . . 66
2.4 Study of City Spatial Graphs by Random Walks . . . . . . . . . . . . . . . . . 66
2.4.1 Alice and Bob Exploring Cities . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4.2 Mixing Rates in Urban Sprawl and Hell’s Kitchens . . . . . . . . 68
2.4.3 Recurrence Time to a Place in the City . . . . . . . . . . . . . . . . . . 70
2.4.4 What does the Physical Dimension of Urban Space Equal? . 72
2.5 First-Passage Times: How Random Walks Embed Graphs into
Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5.1 Probabilistic Projective Geometry . . . . . . . . . . . . . . . . . . . . . . 74
2.5.2 Reduction to Euclidean Metric Geometry . . . . . . . . . . . . . . . 76
2.5.3 Expected Numbers of Steps are Euclidean Distances . . . . . . 78
2.5.4 Probabilistic Topological Space . . . . . . . . . . . . . . . . . . . . . . . . 80
2.5.5 Euclidean Embedding of the Petersen Graph . . . . . . . . . . . . . 80
2.6 Case study: Affine Representations of Urban Space . . . . . . . . . . . . . . 83
2.6.1 Ghetto of Venice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.6.2 Spotting Functional Spaces in the City . . . . . . . . . . . . . . . . . . 86
2.6.3 Bielefeld and the Invisible Wall of Niederwall . . . . . . . . . . . . 86
2.6.4 Access to a Target Node and the Random Target Access
Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.6.5 Pattern of Spatial Isolation in Manhattan . . . . . . . . . . . . . . . . . 92
2.6.6 Neubeckum: Mosque and Church in Dialog . . . . . . . . . . . . . . 98
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3 Exploring Community Structure by Diffusion Processes . . . . . . . . . . . . 101
3.1 Laplace Operators and Their Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.1.1 Random Walks and Diffusions on Weighted Graphs . . . . . . . 102
3.1.2 Diffusion Equation and its Solution . . . . . . . . . . . . . . . . . . . . . 103
3.1.3 Spectra of Special Graphs and Cities . . . . . . . . . . . . . . . . . . . . 104
3.1.4 Cheeger’s Inequalities and Spectral Gaps . . . . . . . . . . . . . . . . 109
3.1.5 Is the City an Expander Graph? . . . . . . . . . . . . . . . . . . . . . . . . 112
3.2 Component Analysis of Transport Networks . . . . . . . . . . . . . . . . . . . . 114
3.2.1 Graph Cut Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.2.2 Weakly Connected Graph Components . . . . . . . . . . . . . . . . . . 115
3.2.3 Graph Partitioning Objectives as Trace Optimization
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.3 Principal Component Analysis of Venetian Canals . . . . . . . . . . . . . . . 121
3.3.1 Sestieri of Venice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.3.2 A Time Scale Argument for the Number of Essential
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.3.3 Low-Dimensional Representations of Transport Networks
by Principal Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.3.4 Dynamical Segmentation of Venetian Canals . . . . . . . . . . . . . 127
3.4 Thermodynamical Formalism for Urban Area Networks . . . . . . . . . . 129
3.4.1 In Search of Lost Time: Is there an Alternative for Zoning? . 129
3.4.2 Internal Energy of Urban Space . . . . . . . . . . . . . . . . . . . . . . . . 131
3.4.3 Entropy of Urban Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.4.4 Pressure in Urban Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4 Spectral Analysis of Directed Graphs and Interacting Networks . . . . . 137
4.1 The Spectral Approach For Directed Graphs . . . . . . . . . . . . . . . . . . . . 138
4.2 Random Walks on Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.2.1 A Time–Forward Random Walk . . . . . . . . . . . . . . . . . . . . . . . . 138
4.2.2 Backwards Time Random Walks . . . . . . . . . . . . . . . . . . . . . . . 139
4.2.3 Stationary Distributions on Directed Graphs . . . . . . . . . . . . . . 140
4.3 Laplace Operator Defined on the Aperiodic Strongly Connected
Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.4 Bi-Orthogonal Decomposition of Random Walks Defined
on Strongly Connected Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . 142
4.4.1 Dynamically Conjugated Operators of Random Walks . . . . . 142
4.4.2 Measures Associated with Random Walks . . . . . . . . . . . . . . . 143
4.4.3 Biorthogonal Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.5 Spectral Analysis of Self-Adjoint Operators Defined on Directed
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.6 Self-Adjoint Operators for Interacting Networks . . . . . . . . . . . . . . . . . 148
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5 Urban Area Networks and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.1 Miracle of Complex Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2 Urban Sprawl – a European Challenge . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3 Ranking Web Pages, Web Sites, and Documents . . . . . . . . . . . . . . . . . 155
5.4 Image Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Bibligraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Another Social Networks Books
Download
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment