In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Saturday, July 17, 2010
Scheduling Algorithm
Contents
Preface v
1 Classification of Scheduling Problems 1
1.1 Scheduling Problems . . . . . . . . . . . . . . . . . . . . 1
1.2 Job Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Job Characteristics . . . . . . . . . . . . . . . . . . . . . 3
1.4 Machine Environment . . . . . . . . . . . . . . . . . . . 5
1.5 Optimality Criteria . . . . . . . . . . . . . . . . . . . . . 6
1.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Some Problems in Combinatorial Optimization 11
2.1 Linear and Integer Programming . . . . . . . . . . . . . 11
2.2 Transshipment Problems . . . . . . . . . . . . . . . . . . 12
2.3 TheMaximum Flow Problem . . . . . . . . . . . . . . . 13
2.4 BipartiteMatching Problems . . . . . . . . . . . . . . . 14
2.5 The Assignment Problem. . . . . . . . . . . . . . . . . . 18
2.6 Arc Coloring of Bipartite Graphs . . . . . . . . . . . . . 22
2.7 Shortest Path Problems and Dynamic Programming . . . 26
3 Computational Complexity 37
3.1 The Classes P and NP . . . . . . . . . . . . . . . . . . . 37
3.2 NP-complete and NP-hard Problems . . . . . . . . . . 41
3.3 Simple Reductions Between Scheduling Problems . . . . 48
3.4 Living with NP-hard Problems . . . . . . . . . . . . . . 51
3.4.1 Local Search Techniques . . . . . . . . . . . . . . 51
3.4.2 Branch-and-Bound Algorithms . . . . . . . . . . . 56
4 Single Machine Scheduling Problems 61
4.1 Minimax Criteria . . . . . . . . . . . . . . . . . . . . . . 62
4.1.1 Lawler’s Algorithm for 1 | prec | fmax . . . . . . . 62
4.1.2 1|prec; pj = 1; rj | fmax and 1 | prec; pmtn; rj | fmax 63
4.2 Maximum Lateness and Related Criteria . . . . . . . . . 67
4.3 TotalWeighted Completion Time . . . . . . . . . . . . . 73
4.3.1 1 | tree | wjCj . . . . . . . . . . . . . . . . . . 73
4.3.2 1 | sp-graph | wjCj . . . . . . . . . . . . . . . . 79
4.4 Weighted Number of Late Jobs . . . . . . . . . . . . . . 84
4.4.1 1 | rj ; pj = 1 | wjUj . . . . . . . . . . . . . . . 84
4.4.2 1 | pj = 1 | wjUj . . . . . . . . . . . . . . . . . 85
4.4.3 1 || Uj . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.4 1 | rj ; pmtn | wjUj . . . . . . . . . . . . . . . . 88
4.5 TotalWeighted Tardiness . . . . . . . . . . . . . . . . . 93
4.6 Problems with Release Times and Identical Processing
Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6.1 1 | rj ; pj = p | wjUj . . . . . . . . . . . . . . . 98
4.6.2 1 | rj ; pj = p | wjCj and 1 | rj ; pj = p | Tj . . 101
4.7 Complexity of SingleMachine Problems . . . . . . . . . 104
5 Parallel Machines 107
5.1 Independent Jobs . . . . . . . . . . . . . . . . . . . . . . 107
5.1.1 IdenticalMachines . . . . . . . . . . . . . . . . . 107
5.1.2 UniformMachines . . . . . . . . . . . . . . . . . 124
5.1.3 UnrelatedMachines . . . . . . . . . . . . . . . . . 136
5.2 Jobs with Precedence Constraints . . . . . . . . . . . . . 139
5.2.1 P | tree; pi = 1 | Lmax-Problems . . . . . . . . . . 140
5.2.2 Problem P2 | prec; pi = 1 | Lmax . . . . . . . . . . 145
5.3 Complexity Results . . . . . . . . . . . . . . . . . . . . . 150
6 Shop Scheduling Problems 155
6.1 The Disjunctive GraphModel . . . . . . . . . . . . . . . 156
6.2 Open Shop Problems . . . . . . . . . . . . . . . . . . . . 158
6.2.1 Arbitrary Processing Times . . . . . . . . . . . . 158
6.2.2 Unit Processing Times . . . . . . . . . . . . . . . 161
6.3 Flow Shop Problems . . . . . . . . . . . . . . . . . . . . 174
6.3.1 MinimizingMakespan . . . . . . . . . . . . . . . 174
6.4 Job Shop Problems . . . . . . . . . . . . . . . . . . . . . 178
6.4.1 Problems with TwoMachines . . . . . . . . . . . 179
6.4.2 Problems with Two Jobs. A Geometric Approach 186
6.4.3 Job Shop Problems with TwoMachines . . . . . . 196
6.4.4 A Branch-and-Bound Algorithm . . . . . . . . . . 202
6.4.5 Applying Tabu-Search to the Job Shop Problem . 221
6.5 Mixed Shop Problems . . . . . . . . . . . . . . . . . . . 226
6.5.1 Problems with TwoMachines . . . . . . . . . . . 226
6.5.2 Problems with Two Jobs . . . . . . . . . . . . . . 227
6.6 Complexity of Shop Scheduling Problems . . . . . . . . . 232
7 Due-Date Scheduling 243
7.1 Problem 1 | dopt | wi|Lσ(i)| + w0 · d . . . . . . . . . . . 244
7.2 Problem 1|dopt|wE Ei+wT Ti + w0d . . . . . . . . . 247
7.3 Problem 1 | d | wi|Lσ(i)| . . . . . . . . . . . . . . . . . 249
7.4 Problem 1 | d | wE Ei + wT Ti . . . . . . . . . . . . 255
7.5 Problem 1 | d | |Li|max and 1 | dopt | |Li|max . . . . . . . . 257
7.6 Problem 1 | dopt | wi|Li| . . . . . . . . . . . . . . . . . 259
7.7 Problem 1 | d | wi|Li| . . . . . . . . . . . . . . . . . . 262
8 Batching Problems 267
8.1 Single Machine s-Batching Problems . . . . . . . . . . . 267
8.2 Single Machine p-Batching Problems . . . . . . . . . . . 271
8.2.1 The Unbounded Model . . . . . . . . . . . . . . . 272
8.2.2 The Bounded Model . . . . . . . . . . . . . . . . 276
8.3 Complexity Results for Single Machine Batching Problems 277
9 Changeover Times and Transportation Times 281
9.1 SingleMachine Problems . . . . . . . . . . . . . . . . . . 282
9.2 Problems with ParallelMachines . . . . . . . . . . . . . 286
9.3 General Shop Problems . . . . . . . . . . . . . . . . . . . 290
10 Multi-Purpose Machines 293
10.1 MPM Problems with Identical and Uniform Machines . 294
10.2 MPM Problems with Shop Characteristics . . . . . . . . 300
10.2.1 Arbitrary Processing Times . . . . . . . . . . . . 300
10.2.2 Unit Processing Times . . . . . . . . . . . . . . . 311
10.3 Complexity Results . . . . . . . . . . . . . . . . . . . . . 315
11 Multiprocessor Tasks 317
11.1 Multiprocessor Task Systems . . . . . . . . . . . . . . . . 318
11.2 Shop Problems with MPT: Arbitrary Processing Times 323
11.3 Shop Problems with MPT: Unit Processing Times . . . 329
11.4 Multi-Mode Multiprocessor-Task Scheduling Problems . 335
11.5 Complexity Results . . . . . . . . . . . . . . . . . . . . . 342
Bibliography 347
Index 367
Download
Another The Core of CS books
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment