In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Monday, July 5, 2010
Discrete Mathematics
Contents
1 Introduction 5
2 Let us count! 7
2.1 A party . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Sets and the like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The number of subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Induction 21
3.1 The sum of odd numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Subset counting revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Counting regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Counting subsets 27
4.1 The number of ordered subsets . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 The number of subsets of a given size . . . . . . . . . . . . . . . . . . . . . 28
4.3 The Binomial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Distributing presents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Anagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Distributing money . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5 Pascal’s Triangle 35
5.1 Identities in the Pascal Triangle . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 A bird’s eye view at the Pascal Triangle . . . . . . . . . . . . . . . . . . . . 38
6 Fibonacci numbers 45
6.1 Fibonacci’s exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Lots of identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 A formula for the Fibonacci numbers . . . . . . . . . . . . . . . . . . . . . . 47
7 Combinatorial probability 51
7.1 Events and probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Independent repetition of an experiment . . . . . . . . . . . . . . . . . . . . 52
7.3 The Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8 Integers, divisors, and primes 55
8.1 Divisibility of integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Primes and their history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Factorization into primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.4 On the set of primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.5 Fermat’s “Little” Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.6 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.7 Testing for primality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9 Graphs 73
9.1 Even and odd degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.2 Paths, cycles, and connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 77
10 Trees 81
10.1 How to grow a tree? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.2 Rooted trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.3 How many trees are there? . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.4 How to store a tree? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
11 Finding the optimum 93
11.1 Finding the best tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.2 Traveling Salesman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
12 Matchings in graphs 98
12.1 A dancing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
12.2 Another matching problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
12.3 The main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.4 How to find a perfect matching? . . . . . . . . . . . . . . . . . . . . . . . . 104
12.5 Hamiltonian cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
13 Graph coloring 110
13.1 Coloring regions: an easy case . . . . . . . . . . . . . . . . . . . . . . . . . . 110
14 A Connecticut class in King Arthur’s court 114
15 A glimpse of cryptography 117
15.1 Classical cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
16 One-time pads 117
16.1 How to save the last move in chess? . . . . . . . . . . . . . . . . . . . . . . 118
16.2 How to verify a password—without learning it? . . . . . . . . . . . . . . . . 120
16.3 How to find these primes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
16.4 Public key cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Download this book click here
Another The Core of Computer Science books click here
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment