s
Contents
Introduction 1
Chapter XVII. Second Order Elliptic Operators 3
Summary 3
17.1. Interior Regularity and Local Existence Theorems 4
17.2. Unique Continuation Theorems 9
17.3. The Dirichlet Problem 24
1.7.4. The Hadamard Parametrix Construction 30
17.5. Asymptotic Properties of Eigenvalues and Eigenfunctions . . 42
Notes 61
Chapter XVIII. Pseudo-Differential Operators 63
Summary . 63
18.1. The Basic Calculus 65
18.2. Conormal Distributions 96
18.3. Totally Characteristic Operators 112
18.4. Gauss Transforms Revisited 141
18.5. The Weyl Calculus 150
18.6. Estimates of Pseudo-Differential Operators 161
Notes 178
Chapter XIX. Elliptic Operators on a Compact Manifold Without
Boundary 180
Summary 180
19.1. Abstract Fredholm Theory 180
19.2. The Index of Elliptic Operators 193
19.3. The Index Theorem in R" . 215
19.4. The Lefschetz Formula 222
19.5. Miscellaneous Remarks on Ellipticity 225
Notes 229
Chapter XX. Boundary Problems for Elliptic Differential Operators . 231
Summary 231
20.1. Elliptic Boundary Problems 232
20.2. Preliminaries on Ordinary Differential Operators 251
20.3. The Index for Elliptic Boundary Problems 255
20.4. Non-Elliptic Boundary Problems 264
Notes 266
Chapter XXI. Symplectic Geometry 268
Summary 268
21.1. The Basic Structure 269
21.2. Submanifolds of a Sympletic Manifold 283
21.3. Normal Forms of Functions 296
21.4. Folds and Glancing Hypersurfaces 303
21.5! Symplectic Equivalence of Quadratic Forms 321
21.6. The Lagrangian Grassmannian 328
Notes 346
Chapter XXII. Some Classes of (Micro-)hypoelliptic Operators . . . . 348
Summary 348
22.1. Operators with Pseudo-Differential Parametrix 349
22.2. Generalized Kolmogorov Equations 353
22.3. Melin's Inequality 359
22.4. Hypoellipticity with Loss of One Derivative 366
Notes 383
Chapter XXIII. The Strictly hyperbolic Cauchy Problem 385
Summary . . 385
23.1. First Order Operators 385
23.2. Operators of Higher Order 390
23.3. Necessary Conditions for Correctness of the Cauchy
Problem . . 400
23.4. Hyperbolic Operators of Principal Type 404
Notes 414
Chapter XXIV. The Mixed Dirichlet-Cauchy Problem for Second Order
Operators 416
Summary 416
24.1. Energy Estimates and Existence Theorems in the
Hyperbolic Case 416
24.2. Singularities in the Elliptic and Hyperbolic Regions . . . . 423
24.3. The Generalized Bicharacteristic Flow 430
24.4. The Diffractive Case 443
24.5. The General Propagation of Singularities 455
24.6. Operators Microlocally of Tricomi's Type 460
24.7. Operators Depending on Parameters 465
Notes . . 469
Appendix B. Some Spaces of Distributions 471
B.l Distributions in WL
n
and in an Open Manifold 471
B.2. Distributions in a Half Space and in a Manifold
with Boundary 478
Appendix C. Some Tools from Differential Geometry 485
C.l. The Frobenius Theorem and Foliations 485
C.2. A Singular Differential Equation 487
C.3. Clean Intersections and Maps of Constant Rank 490
C.4. Folds and Involutions 492
C.5. Geodesic Normal Coordinates 500
C.6. The Morse Lemma with Parameters 502
Notes 504
Bibliography 505
Index 523
Index of Notation 525
Other Mathematics Books
Classical mathematics - Wikipedia, the free encyclopedia
Classics in Mathematics
Concrete Mathematics - A Foundation for Computer Science
Mathematics For Computer Science
Other Core of CS Books
Download
No comments:
Post a Comment