TABLE OF CONTENTS
INTRODUCTION .......................................... x
CHAPTER 1
Introduction
Comparison Theorems for Stieltjes Integro-
Differential Equations .................. 4
Separation Theorems ..................... 20
The Green's Function .................... 25
CHAPTER 2
Introduction .................................. 28
2.1. Non-Oscillation Criteria for Linear
Volterra-Stieltjes Integral Equations ... 29
2.1A. Applications to Differential Equations .. 52
2.1B. Applications to Difference Equations .... 60
2.2. Oscillation Criteria .................... 74
2.2A. Applications to Differential Equations .. 80
2.2B. Applications to Difference Equations .... 82
2.3. An Oscillation Theorem in the Nonlinear
Case .................................... 87
Addenda ....................................... 113
CHAPTER 3
Introduction .................................. 118
3.1. Generalized Derivatives ................. 120
3.2. Generalized Differential Expressions of
the Second Order ........................ 123
3.3. The Weyl Classification ................. 129
3.4. Applications ............................ 143
3.5. Limit-Point and Limit-Circle Criteria .... 147
3.6. J-Self-Adjointness of Generalized
Differential Operators .................. 156
3.7. Dirichlet Integrals Associated with
Generalized Differential Expressions .... 180
3.8. Dirichlet Conditions for Three-Term
Recurrence Relations ..................... 183
CHAPTER 4
Introduction ................................... 197
4.1. Sturm-Liouville Difference Equations with
an Indefinite Weight-Function ........... 199
4.2. Sturm-Liouville Differential Equations
with an Indefinite Weight-Function ...... 212
CHAPTER 5
Introduction
APPENDIX I
Functions of Bounded Variation .......... 256
The Riemann-Stieltjes Integral .......... 258
General Theory of Volterra-Stieltjes
Integral Equations ...................... 264
Construction of the Green's Function .... 273 1.4.
The Discrete Spectrum of Generalized
Differential Operators .................. 226
The Continuous Spectrum of Generalized
Differential Operators .................. 242
APPENDIX II
II.1. Compactness in L P and Other Spaces ..
APPENDIX III
III.l. Eigenvalues of Generalized Differential
Equations ............................
III.2. Linear Operators in a Hilbert Space ..
III.3. Linear Operators in a Krein Space ....
III.4. Formally Self-Adjoint Even Order
Differential Equations with an
Indefinite Weight-Function ...........
BIBLIOGRAPHY ......................................... 309
Subject Index ........................................ 318
Handbook of Integral Equations
Inequalities for Differential and Integral Equations
Integral equation - Wikipedia, the free encyclopedia
Integral Equation -- from Wolfram MathWorld
Other Mathematics Books
Download
No comments:
Post a Comment