Lars Hormander
Reprint of the 1994 Edition
Birkhauser
Boston • Basel • Berlin
C O N T E N T S
Preface iii
Contents v
Chapter I. Convex functions of one variable 1
1.1. Definitions and basic facts 1
1.2. Some basic inequalities 9
1.3. Conjugate convex functions (Legendre transforms) 16
1.4. The r function and a difference equation 20
1.5. Integral representation of convex functions 23
1.6. Semi-convex and quasi-convex functions 26
1.7. Convexity of the minimum of a one parameter
family of functions 28
Chapter II. Convexity in a finite-dimensional
vector space 36
2.1. Definitions and basic facts 36
2.2. The Legendre transformation 66
2.3. Geometric inequalities 75
2.4. Smoothness of convex sets 94
2.5. Projective convexity 98
2.6. Convexity in Fourier analysis 111
Chapter III. Subharmonic functions 116
3.1. Harmonic functions 116
3.2. Basic facts on subharmonic functions 141
3.3. Harmonic majorants and the Riesz representation
formula 171
3.4. Exceptional sets 203
Chapter IV. Plurisubharmonic functions 225
4.1. Basic facts 225
4.2. Existence theorems in L^ spaces with weights 248
4.3. Lelong numbers of plurisubharmonic functions 265
4.4. Closed positive currents 271
4.5. Exceptional sets 285
4.6. Other convexity conditions 290
4.7. Analytic functionals 300
Chapter V. Convexity with respect to a linear
group 315
5.1. Smooth functions in the whole space 315
5.2. General G subharmonic functions 324
Chapter VI. Convexity with respect to differen-
tial operators 328
6.1. P-convexity 328
6.2. An existence theorem in pseudoconvex domains 332
6.3. Analytic differential equations 344
Chapter VII. Convexity and condition (*) 353
7.1. Local analytic solvability for d/dzi 353
7.2. Generalities on projections and distance func-
tions, and a theorem of Trepreau 372
7.3. The symplectic point of view 375
7.4. The microlocal transformation theory 382
A p p e n d i x . 391
A. Polynomials and mult linear forms 391
B. Commutator identities 396
N o t e s 403
References 407
Index of notation 411
Index 413
Other core of cs books
Discrete Mathematics, 6th Edition (Instructor's Manual)
Concrete Mathematics - A Foundation for Computer Science
Mathematics - Wikipedia, the free encyclopedia
Fun Mathematics Lessons by Cynthia Lanius
Download
No comments:
Post a Comment