IntegralTransforms and Their Applications
Second Edition
Lokenath Debnath Dambaru Bhatta
Contents
1 Integral Transforms 1
1.1 Brief Historical Introduction . . . . . . . . . . . . . . . . . . . 1
1.2 . . . . . . . . . . . . . . . . .
2 Fourier Transforms and Their Applications 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2
2.3 Definition of the Fourier Transform and Examples . . . . . .
2.4 Fourier Transforms of Generalized Functions . . . . . . . . . .
2.5 Basic Properties of Fourier Transforms . . . . . . . . . . . . . 28
2.6
2.7 The Shannon Sampling Theorem . . . . . . . . . . . . . . . . 44
2.8 Gibbs’ Phenomenon
2.9 Heisenberg’s Uncertainty Principle . . . . . . . . . . . . . . . 57
2.10 Applications of Fourier Transforms to Ordinary Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.11 Solutions of Integral Equations . . . . . . . . . . . . . . . . . 65
2.12 Solutions of Partial Differential Equations . . . . . . . . . . . 68
2.13 Fourier Cosine and Sine Transforms with Examples . . . . . . 91
2.14 Properties of Fourier Cosine and Sine Transforms . . . . . . . 93
2.15 Applications of Fourier Cosine and Sine Transforms to Partial
Differential Equations
2.16 Evaluation of Definite Integrals . . . . . . . . . . . . . . . . . 100
2.17 Applications of Fourier Transforms in Mathematical Statistics 103
2.18 Multiple Fourier Transforms and Their Applications . . . . . 109
3 Laplace Transforms and Their Basic Properties 133
3.1
3.2 Definition of the Laplace Transform and Examples . . . . . . 134
3.3 Existence Conditions for the Laplace Transform . . . . . . . . 139
3.4 Basic Properties of Laplace Transforms . . . . . . . . . . . . . 140
3.5 The Convolution Theorem and Properties of Convolution . . 145
3.6 Differentiation and Integration of Laplace Transforms . . . . 151
3.7 The Inverse Laplace Transform and Examples . . . . . . . . . 154
3.8 Tauberian Theorems and Watson’s Lemma . . . . . . . . . . 168
Basic Concepts and Definitions
The Fourier Integral Formulas . . . . . . . . . . . . . . . . . . 10
6
17
12
9
Poisson’s Summation Formula . . . . . . . . . . . . . . . . . . 37
. . . . . . . . . . . . . . . . . . . . . . . 54
. . . . . . . . . . . . . . . . . . . . . . 96
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.19 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4 Applications of Laplace Transforms 181
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.2 Solutions of Ordinary Differential Equations . . . . . . . . . . 182
4.3 Partial Differential Equations, Initial and Boundary Value
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.4 Solutions of Integral Equations . . . . . . . . . . . . . . . . . 222
4.5 Solutions of Boundary Value Problems . . . . . . . . . . . . . 225
4.6 Evaluation of Definite Integrals . . . . . . . . . . . . . . . . . 228
4.7 Solutions of Difference and Differential-Difference Equations . 230
4.8 Applications of the Joint Laplace and Fourier Transform . . . 237
4.9 Summation of Infinite Series . . . . . . . . . . . . . . . . . . . 248
4.10 Transfer Function and Impulse Response Function of a Linear
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
5 Fractional Calculus and Its Applications 269
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
5.2 Historical Comments . . . . . . . . . . . . . . . . . . . . . . . 270
5.3 Fractional Derivatives and Integrals . . . . . . . . . . . . . . . 272
5.4 Applications of Fractional Calculus . . . . . . . . . . . . . . . 279
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
6 Applications of Integral Transforms to Fractional Differential
and Integral Equations 283
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
6.2 Laplace Transforms of Fractional Integrals and Fractional
Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
6.3 Fractional Ordinary Differential Equations . . . . . . . . . . . 287
6.4 Fractional Integral Equations . . . . . . . . . . . . . . . . . . 290
6.5 Initial Value Problems for Fractional Differential Equations . 295
6.6 Green’s Functions of Fractional Differential Equations . . . . 298
6.7 Fractional Partial Differential Equations . . . . . . . . . . . . 299
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
7 Hankel Transforms and Their Applications 315
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
7.2 The Hankel Transform and Examples . . . . . . . . . . . . . . 316
7.3 Operational Properties of the Hankel Transform . . . . . . . . 319
7.4 Applications of Hankel Transforms to Partial Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
© 2007 by Taylor & Francis Group, LLC
8 Mellin Transforms and Their Applications 339
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
8.2 Definition of the Mellin Transform and Examples . . . . . . . 340
8.3 Basic Operational Properties of Mellin Transforms . . . . . . 343
8.4 Applications of Mellin Transforms . . . . . . . . . . . . . . . 349
8.5 Mellin Transforms of the Weyl Fractional Integral and
the Weyl Fractional Derivative . . . . . . . . . . . . . . . . . 353
8.6 Application of Mellin Transforms to Summation of Series . . 358
8.7 Generalized Mellin Transforms . . . . . . . . . . . . . . . . . 361
8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
9 Hilbert and Stieltjes Transforms 371
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
9.2 Definition of the Hilbert Transform and Examples . . . . . . 372
9.3 Basic Properties of Hilbert Transforms . . . . . . . . . . . . . 375
9.4 Hilbert Transforms in the Complex Plane . . . . . . . . . . . 378
9.5 Applications of Hilbert Transforms . . . . . . . . . . . . . . . 380
9.6 Asymptotic Expansions of One-Sided Hilbert Transforms . . . 388
9.7 Definition of the Stieltjes Transform and Examples . . . . . . 391
9.8 Basic Operational Properties of Stieltjes Transforms . . . . . 394
9.9 Inversion Theorems for Stieltjes Transforms . . . . . . . . . . 396
9.10 Applications of Stieltjes Transforms . . . . . . . . . . . . . . . 399
9.11 The Generalized Stieltjes Transform . . . . . . . . . . . . . . 401
9.12 Basic Properties of the Generalized Stieltjes Transform . . . . 403
9.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
10 Finite Fourier Sine and Cosine Transforms 407
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
10.2 Definitions of the Finite Fourier Sine and Cosine Transforms
and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
10.3 Basic Properties of Finite Fourier Sine and Cosine Transforms 410
10.4 Applications of Finite Fourier Sine and Cosine Transforms . . 416
10.5 Multiple Finite Fourier Transforms and Their Applications . 422
10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
11 Finite Laplace Transforms 429
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
11.2 Definition of the Finite Laplace Transform and Examples . . 430
11.3 Basic Operational Properties of the Finite Laplace Transform 436
11.4 Applications of Finite Laplace Transforms . . . . . . . . . . . 439
11.5 Tauberian Theorems . . . . . . . . . . . . . . . . . . . . . . . 443
11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443© 2007 by Taylor & Francis Group, LLC
12 Z Transforms 445
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
12.2 Dynamic Linear Systems and Impulse Response . . . . . . . . 445
12.3 Definition of the Z Transform and Examples . . . . . . . . . . 449
12.4 Basic Operational Properties of Z Transforms . . . . . . . . . 453
12.5 The Inverse Z Transform and Examples . . . . . . . . . . . . 459
12.6 Applications of Z Transforms to Finite Difference Equations . 463
12.7 Summation of Infinite Series . . . . . . . . . . . . . . . . . . . 466
12.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
13 Finite Hankel Transforms 473
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
13.2 Definition of the Finite Hankel Transform and Examples . . . 473
13.3 Basic Operational Properties . . . . . . . . . . . . . . . . . . 476
13.4 Applications of Finite Hankel Transforms . . . . . . . . . . . 476
13.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
14 Legendre Transforms 485
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
14.2 Definition of the Legendre Transform and Examples . . . . . 486
14.3 Basic Operational Properties of Legendre Transforms . . . . . 489
14.4 Applications of Legendre Transforms to Boundary Value
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
14.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
15 Jacobi and Gegenbauer Transforms 501
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
15.2 Definition of the Jacobi Transform and Examples . . . . . . . 501
15.3 Basic Operational Properties . . . . . . . . . . . . . . . . . . 504
15.4 Applications of Jacobi Transforms to the Generalized Heat
Conduction Problem . . . . . . . . . . . . . . . . . . . . . . . 505
15.5 The Gegenbauer Transform and Its Basic Operational
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
15.6 Application of the Gegenbauer Transform . . . . . . . . . . . 510
16 Laguerre Transforms 511
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
16.2 Definition of the Laguerre Transform
and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
16.3 Basic Operational Properties . . . . . . . . . . . . . . . . . . 516
16.4 Applications of Laguerre Transforms . . . . . . . . . . . . . . 520
16.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523© 2007 by Taylor & Francis Group, LLC
17 Hermite Transforms 525
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
17.2 Definition of the Hermite Transform and Examples . . . . . . 526
17.3 Basic Operational Properties . . . . . . . . . . . . . . . . . . 529
17.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
18 The Radon Transform and Its Applications 539
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
18.2 The Radon Transform . . . . . . . . . . . . . . . . . . . . . . 541
18.3 Properties of the Radon Transform . . . . . . . . . . . . . . . 545
18.4 The Radon Transform of Derivatives . . . . . . . . . . . . . . 550
18.5 Derivatives of the Radon Transform . . . . . . . . . . . . . . 551
18.6 Convolution Theorem for the Radon Transform . . . . . . . . 553
18.7 Inverse of the Radon Transform and the Parseval Relation . . 554
18.8 Applications of the Radon Transform . . . . . . . . . . . . . . 560
18.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
19 Wavelets and Wavelet Transforms 563
19.1 Brief Historical Remarks . . . . . . . . . . . . . . . . . . . . . 563
19.2 Continuous Wavelet Transforms . . . . . . . . . . . . . . . . . 565
19.3 The Discrete Wavelet Transform . . . . . . . . . . . . . . . . 573
19.4 Examples of Orthonormal Wavelets . . . . . . . . . . . . . . . 575
19.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
Appendix A Some Special Functions and Their Properties 587
A-1 Gamma, Beta, and Error Functions . . . . . . . . . . . . . . . 587
A-2 Bessel and Airy Functions . . . . . . . . . . . . . . . . . . . . 592
A-3 Legendre and Associated Legendre Functions . . . . . . . . . 598
A-4 Jacobi and Gegenbauer Polynomials . . . . . . . . . . . . . . 601
A-5 Laguerre and Associated Laguerre Functions . . . . . . . . . . 605
A-6 Hermite Polynomials and Weber-Hermite Functions . . . . . . 607
A-7 Mittag Leffler Function . . . . . . . . . . . . . . . . . . . . . . 609
Appendix B Tables of Integral Transforms 611
B-1 Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . 611
B-2 Fourier Cosine Transforms . . . . . . . . . . . . . . . . . . . . 615
B-3 Fourier Sine Transforms . . . . . . . . . . . . . . . . . . . . . 617
B-4 Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . 619
B-5 Hankel Transforms . . . . . . . . . . . . . . . . . . . . . . . . 624
B-6 Mellin Transforms . . . . . . . . . . . . . . . . . . . . . . . . 627
B-7 Hilbert Transforms . . . . . . . . . . . . . . . . . . . . . . . . 630
B-8 Stieltjes Transforms . . . . . . . . . . . . . . . . . . . . . . . 633
B-9 Finite Fourier Cosine Transforms . . . . . . . . . . . . . . . . 636
B-10 Finite Fourier Sine Transforms . . . . . . . . . . . . . . . . . 638
B-11 Finite Laplace Transforms . . . . . . . . . . . . . . . . . . . . 640B-12 Z Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
B-13 Finite Hankel Transforms . . . . . . . . . . . . . . . . . . . . 644
Answers and Hints to Selected Exercises 645
2.19 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
3.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
4.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
9.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
12.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
13.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
16.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
17.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
18.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
19.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
Bibliography 673
Other Core of CS Books
Integral equation - Wikipedia, the free encyclopedia
Integral Equations and Operator Theory
Handbook of Integral Equations
Inequalities for Differential and Integral Equations
Download
No comments:
Post a Comment