In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Monday, February 27, 2012
Differential and Integral Equations
Peter J. Collins
Senior Research Fellow, St Edmund Hall, Oxford
Contents
Preface v
How to use this book xi
Prerequisites xiii
0 Some Preliminaries 1
1 Integral Equations and Picard’s Method 5
1.1 Integral equations and their relationship to diferential equations . . . . 5
1.2 Picard’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Existence and Uniqueness 19
2.1 First-order differential equations in a single independent variable . . . . 20
2.2 Two simultaneous equations in a single variable . . . . . . . . . . . . . . 26
2.3 A second-order equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3 The Homogeneous Linear Equation and Wronskians 33
3.1 Some linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Wronskians and the linear independence of solutions of the second-order
homogeneous linear equation . . . . . . . . . . . . . . . . . . . . . . . . 36
4 The Non-Homogeneous Linear Equation 41
4.1 The method of variation of parameters . . . . . . . . . . . . . . . . . . . 43
4.2 Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 First-Order Partial Differential Equations 59
5.1 Characteristics and some geometrical considerations . . . . . . . . . . . 60
5.2 Solving characteristic equations . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 General solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Fitting boundary conditions to general solutions . . . . . . . . . . . . . 70
5.5 Parametric solutions and domains of definition . . . . . . . . . . . . . . 75
5.6 A geometric interpretation of an analytic condition . . . . . . . . . . . . 83
6 Second-Order Partial Differential Equations 85
6.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Reduction to canonical form . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 General solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Problems involving boundary conditions . . . . . . . . . . . . . . . . . . 103
6.5 Appendix: technique in the use of the chain rule . . . . . . . . . . . . . 113
7 The Diffusion and Wave Equations and the Equation of Laplace 115
7.1 The equations to be considered . . . . . . . . . . . . . . . . . . . . . . . 116
7.2 One-dimensional heat conduction . . . . . . . . . . . . . . . . . . . . . . 119
7.3 Transverse waves in a finite string . . . . . . . . . . . . . . . . . . . . . . 123
7.4 Separated solutions of Laplace’s equation in polar co-ordinates and
Legendre’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.5 The Dirichlet problem and its solution for the disc . . . . . . . . . . . . 133
7.6 Radially symmetric solutions of the two-dimensional wave equation and
Bessel’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.7 Existence and uniqueness of solutions, well-posed problems . . . . . . . 138
7.8 Appendix: proof of the Mean Value Theorem for harmonic functions . . 144
8 The Fredholm Alternative 149
8.1 A simple case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.2 Some algebraic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.3 The Fredholm Alternative Theorem . . . . . . . . . . . . . . . . . . . . . 155
8.4 A worked example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9 Hilbert–Schmidt Theory 165
9.1 Eigenvalues are real and eigenfunctions corresponding to distinct
eigenvalues are orthogonal . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.2 Orthonormal families of functions and Bessel’s inequality . . . . . . . . . 168
9.3 Some results about eigenvalues deducible from Bessel’s inequality . . . . 169
9.4 Description of the sets of all eigenvalues and all eigenfunctions . . . . . . 173
9.5 The Expansion Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10 Iterative Methods and Neumann Series 181
10.1 An example of Picard’s method . . . . . . . . . . . . . . . . . . . . . . . 181
10.2 Powers of an integral operator . . . . . . . . . . . . . . . . . . . . . . . . 183
10.3 Iterated kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
10.4 Neumann series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.5 A remark on the convergence of iterative methods . . . . . . . . . . . . . 188
11 The Calculus of Variations 189
11.1 The fundamental problem . . . . . . . . . . . . . . . . . . . . . . . . . . 189
11.2 Some classical examples from mechanics and geometry . . . . . . . . . . 191
11.3 The derivation of Euler’s equation for the fundamental problem . . . . . 196
11.4 The special case F = F(y, y
) . . . . . . . . . . . . . . . . . . . . . . . . 198
11.5 When F contains higher derivatives of y . . . . . . . . . . . . . . . . . . 201
11.6 When F contains more dependent functions . . . . . . . . . . . . . . . . 203
11.7 When F contains more independent variables . . . . . . . . . . . . . . . 208
11.8 Integral constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
11.9 Non-integral constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
11.10 Varying boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 218
12 The Sturm–Liouville Equation 225
12.1 Some elementary results on eigenfunctions and eigenvalues . . . . . . . . 226
12.2 The Sturm–Liouville Theorem . . . . . . . . . . . . . . . . . . . . . . . . 229
12.3 Derivation from a variational principle . . . . . . . . . . . . . . . . . . . 233
12.4 Some singular equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
12.5 The Rayleigh–Ritz method . . . . . . . . . . . . . . . . . . . . . . . . . . 239
13 Series Solutions 243
13.1 Power series and analytic functions . . . . . . . . . . . . . . . . . . . . . 245
13.2 Ordinary and regular singular points . . . . . . . . . . . . . . . . . . . . 248
13.3 Power series solutions near an ordinary point . . . . . . . . . . . . . . . 250
13.4 Extended power series solutions near a regular singular point: theory . . 258
13.5 Extended power series solutions near a regular singular point: practice . 262
13.6 The method of Frobenius . . . . . . . . . . . . . . . . . . . . . . . . . . 275
13.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
13.8 Appendix: the use of complex variables . . . . . . . . . . . . . . . . . . 282
14 Transform Methods 287
14.1 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
14.2 Applications of the Fourier transform . . . . . . . . . . . . . . . . . . . . 292
14.3 The Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
14.4 Applications of the Laplace transform . . . . . . . . . . . . . . . . . . . 302
14.5 Applications involving complex analysis . . . . . . . . . . . . . . . . . . 309
14.6 Appendix: similarity solutions . . . . . . . . . . . . . . . . . . . . . . . . 323
15 Phase-Plane Analysis 327
15.1 The phase-plane and stability . . . . . . . . . . . . . . . . . . . . . . . . 327
15.2 Linear theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
15.3 Some non-linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
15.4 Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Appendix: the solution of some elementary ordinary differential
equations 353
Bibliography 363
Index 369
Mathematics For Computer Science
Concrete Mathematics - A Foundation for Computer Science
Other Mathematics Books
Download
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment