In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Saturday, January 21, 2012
Data Mining - Know It All (Elsevier, 2009)
Contents
About This Book ........................................................................... ix
Contributing Authors .................................................................... xi
CHAPTER 1 What’s It All About? ...................................................... 1
1.1 Data Mining and Machine Learning ................................... 1
1.2 Simple Examples: The Weather Problem
and Others ......................................................................... 7
1.3 Fielded Applications .......................................................... 20
1.4 Machine Learning and Statistics ........................................ 27
1.5 Generalization as Search .................................................... 28
1.6 Data Mining and Ethics ...................................................... 32
1.7 Resources ........................................................................... 34
CHAPTER 2 Data Acquisition and Integration ............................... 37
2.1 Introduction ....................................................................... 37
2.2 Sources of Data .................................................................. 37
2.3 Variable Types.................................................................... 39
2.4 Data Rollup ........................................................................ 41
2.5 Rollup with Sums, Averages, and Counts ......................... 48
2.6 Calculation of the Mode .................................................... 49
2.7 Data Integration ................................................................. 50
CHAPTER 3 Data Preprocessing ....................................................... 57
3.1 Why Preprocess the Data? ................................................. 58
3.2 Descriptive Data Summarization ....................................... 61
3.3 Data Cleaning ..................................................................... 72
3.4 Data Integration and Transformation ................................ 78
3.5 Data Reduction .................................................................. 84
3.6 Data Discretization and Concept
Hierarchy Generation ........................................................ 98
3.7 Summary ............................................................................ 108
3.8 Resources ........................................................................... 109
CHAPTER 4 Physical Design for Decision Support,
Warehousing, and OLAP .............................................. 113
4.1 What Is Online Analytical Processing? .............................. 113
4.2 Dimension Hierarchies ...................................................... 116
4.3 Star and Snowflake Schemas ............................................. 117
4.4 Warehouses and Marts ....................................................... 119
4.5 Scaling Up the System ....................................................... 122
4.6 DSS, Warehousing, and OLAP
Design Considerations ....................................................... 124
4.7 Usage Syntax and Examples for Major
Database Servers ................................................................ 125
4.8 Summary ............................................................................ 128
4.9 Literature Summary ............................................................ 129
Resources ........................................................................... 129
CHAPTER 5 Algorithms: The Basic Methods ................................. 131
5.1 Inferring Rudimentary Rules .............................................. 132
5.2 Statistical Modeling ............................................................ 136
5.3 Divide and Conquer: Constructing Decision Trees .......... 144
5.4 Covering Algorithms: Constructing Rules ......................... 153
5.5 Mining Association Rules ................................................... 160
5.6 Linear Models ..................................................................... 168
5.7 Instance-Based Learning ..................................................... 176
5.8 Clustering ........................................................................... 184
5.9 Resources ........................................................................... 188
CHAPTER 6 Further Techniques in Decision Analysis ................ 191
6.1 Modeling Risk Preferences ................................................ 191
6.2 Analyzing Risk Directly ...................................................... 198
6.3 Dominance ......................................................................... 200
6.4 Sensitivity Analysis ............................................................. 205
6.5 Value of Information .......................................................... 215
6.6 Normative Decision Analysis ............................................. 220
CHAPTER 7 Fundamental Concepts of
Genetic Algorithms ........................................................ 221
7.1 The Vocabulary of Genetic Algorithms ............................. 222
7.2 Overview ............................................................................ 230
7.3 The Architecture of a Genetic Algorithm ......................... 241
7.4 Practical Issues in Using a Genetic Algorithm .................. 285
7.5 Review ............................................................................... 290
7.6 Resources ........................................................................... 290
CHAPTER 8 Data Structures and Algorithms for Moving
Objects Types ................................................................. 293
8.1 Data Structures ................................................................... 293
8.2 Algorithms for Operations on Temporal
Data Types ......................................................................... 298
8.3 Algorithms for Lifted Operations ....................................... 310
8.4 Resources ........................................................................... 319
CHAPTER 9 Improving the Model ..................................................... 321
9.1 Learning from Errors .......................................................... 323
9.2 Improving Model Quality, Solving Problems .................... 343
9.3 Summary ............................................................................ 395
CHAPTER 10 Social Network Analysis .............................................. 397
10.1 Social Sciences and Bibliometry ........................................ 398
10.2 PageRank and Hyperlink-Induced Topic Search ............... 400
10.3 Shortcomings of the Coarse-Grained Graph Model .......... 410
10.4 Enhanced Models and Techniques .................................... 416
10.5 Evaluation of Topic Distillation ......................................... 424
10.6 Measuring and Modeling the Web .................................... 430
10.7 Resources ........................................................................... 440
Index ........................................................................................... 443
Other Data Mining Books
Biological Data Mining
Download
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment