In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Wednesday, January 18, 2012
Data Analysis Using the Method of Least Squares
Contents
Chapter 1 INTRODUCTION.............................................................................1
1.1 Quantitative Experiments..................................................................1
1.2 Dealing with Uncertainty..................................................................5
1.3 Statistical Distributions.....................................................................6
The normal distribution...............................................................8
The binomial distribution ..........................................................10
The Poisson distribution............................................................11
The χ 2 χχ distribution.....................................................................13
The t distribution .......................................................................15 t
The F distribution......................................................................16 F
1.4 Parametric Models .........................................................................17
1.5 Basic Assumptions .........................................................................19
1.6 Systematic Errors............................................................................22
1.7 Nonparametric Models ...................................................................24
1.8 Statistical Learning .........................................................................27
Chapter 2 THE METHOD OF LEAST SQUARES ........................................31
2.1 Introduction.....................................................................................31
2.2 The Objective Function...................................................................34
2.3 Data Weighting ...............................................................................38
2.4 Obtaining the Least Squares Solution............................................. 44
2.5 Uncertainty in the Model Parameters.............................................. 50
2.6 Uncertainty in the Model Predictions ............................................. 54
2.7 Treatment of Prior Estimates .......................................................... 60
2.8 Applying Least Squares to Classification Problems ....................... 64
Chapter 3 MODEL EVALUATION................................................................. 73
3.1 Introduction..................................................................................... 73
3.2 Goodness-of-Fit .............................................................................. 74
3.3 Selecting the Best Model ................................................................ 79
3.4 Variance Reduction......................................................................... 85
3.5 Linear Correlation........................................................................... 88
3.6 Outliers ........................................................................................... 93
3.7 Using the Model for Extrapolation ................................................. 96
3.8 Out-of-Sample Testing ................................................................... 99
3.9 Analyzing the Residuals ............................................................... 105
Chapter 4 CANDIDATE PREDICTORS....................................................... 115
4.1 Introduction................................................................................... 115
4.2 Using the F Distribution ............................................................... 116 F
4.3 Nonlinear Correlation ................................................................... 122
4.4 Rank Correlation........................................................................... 131
Chapter 5 DESIGNING QUANTITATIVE EXPERIMENTS..................... 137
5.1 Introduction................................................................................... 137
5.2 The Expected Value of the Sum-of-Squares................................. 139
5.3 The Method of Prediction Analysis .............................................. 140
5.4 A Simple Example: A Straight Line Experiment.......................... 143
5.5 Designing for Interpolation........................................................... 147
5.6 Design Using Computer Simulations............................................ 150
5.7 Designs for Some Classical Experiments ..................................... 155
5.8 Choosing the Values of the Independent Variables ...................... 162
5.9 Some Comments about Accuracy .................................................167
Chapter 6 SOFTWARE ...................................................................................169
6.1 Introduction...................................................................................169
6.2 General Purpose Nonlinear Regression Programs ........................170
6.3 The NIST Statistical Reference Datasets ......................................173
6.4 Nonlinear Regression Convergence Problems..............................178
6.5 Linear Regression: a Lurking Pitfall .............................................184
6.6 Multi-Dimensional Models...........................................................191
6.7 Software Performance...................................................................196
6.8 The REGRESS Program ...............................................................198
Chapter 7 KERNEL REGRESSION..............................................................203
7.1 Introduction...................................................................................203
7.2 Kernel Regression Order Zero ......................................................205
7.3 Kernel Regression Order One .......................................................208
7.4 Kernel Regression Order Two ......................................................212
7.5 Nearest Neighbor Searching .........................................................215 r
7.6 Kernel Regression Performance Studies.......................................223
7.7 A Scientific Application ...............................................................225
7.8 Applying Kernel Regression to Classification ..............................232
7.9 Group Separation: An Alternative to Classification .....................236
Appendix A: Generating Random Noise ........................................................239
Appendix B: Approximating the Standard Normal Distribution ................243
References ......................................................................................................245
Index ......................................................................................................249
Other Layman Books
Download
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment