In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Wednesday, December 14, 2011
Boundary Integral Equations
Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Green Representation Formula . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Boundary Potentials and Calder´on’s Projector . . . . . . . . . . . . . 3
1.3 Boundary Integral Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 The Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 The Neumann Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Exterior Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 The Exterior Dirichlet Problem . . . . . . . . . . . . . . . . . . . . 13
1.4.2 The Exterior Neumann Problem . . . . . . . . . . . . . . . . . . . 15
1.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2. Boundary Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 The Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.1 Low Frequency Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 The Lam´e System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.1 The Interior Displacement Problem . . . . . . . . . . . . . . . . . 47
2.2.2 The Interior Traction Problem . . . . . . . . . . . . . . . . . . . . . 55
2.2.3 Some Exterior Fundamental Problems . . . . . . . . . . . . . . 56
2.2.4 The Incompressible Material . . . . . . . . . . . . . . . . . . . . . . . 61
2.3 The Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.1 Hydrodynamic Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.2 The Stokes Boundary Value Problems . . . . . . . . . . . . . . . 66
2.3.3 The Incompressible Material — Revisited . . . . . . . . . . . 75
2.4 The Biharmonic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.4.1 Calder´on’s Projector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.4.2 Boundary Value Problems and Boundary
Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3. Representation Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.1 Classical Function Spaces and Distributions . . . . . . . . . . . . . . . . 95
3.2 Hadamard’s Finite Part Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.3 Local Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.4 Short Excursion to Elementary Differential Geometry . . . . . . . 111
3.4.1 Second Order Differential Operators
in Divergence Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.5 Distributional Derivatives and Abstract Green’s
Second Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.6 The Green Representation Formula . . . . . . . . . . . . . . . . . . . . . . . 130
3.7 Green’s Representation Formulae in Local Coordinates . . . . . . 135
3.8 Multilayer Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.9 Direct Boundary Integral Equations . . . . . . . . . . . . . . . . . . . . . . 145
3.9.1 Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.9.2 Transmission Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.10 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4. Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.1 The Spaces H s (Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2 The Trace Spaces H s (Γ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.2.1 Trace Spaces for Periodic Functions on a Smooth
Curve in IR
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.2.2 Trace Spaces on Curved Polygons in IR
2
. . . . . . . . . . . . . 185
4.3 The Trace Spaces on an Open Surface . . . . . . . . . . . . . . . . . . . . . 189
4.4 Weighted Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5. Variational Formulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.1 Partial Differential Equations of Second Order . . . . . . . . . . . . . 195
5.1.1 Interior Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.1.2 Exterior Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.1.3 Transmission Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.2 Abstract Existence Theorems for Variational Problems . . . . . . 218
5.2.1 The Lax–Milgram Theorem . . . . . . . . . . . . . . . . . . . . . . . . 219
5.3 The Fredholm–Nikolski Theorems . . . . . . . . . . . . . . . . . . . . . . . . 226
5.3.1 Fredholm’s Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
5.3.2 The Riesz–Schauder and the Nikolski Theorems . . . . . . 235
5.3.3 Fredholm’s Alternative for Sesquilinear Forms . . . . . . . . 240
5.3.4 Fredholm Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
5.4 G˚arding’s Inequality for Boundary Value Problems . . . . . . . . . 243
5.4.1 G˚arding’s Inequality for Second Order Strongly
Elliptic Equations in Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
5.4.2 The Stokes System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
5.4.3 G˚arding’s Inequality for Exterior Second Order
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
5.4.4 G˚arding’s Inequality for Second Order Transmission
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
5.5 Existence of Solutions to Boundary Value Problems . . . . . . . . . 259
5.5.1 Interior Boundary Value Problems . . . . . . . . . . . . . . . . . . 260
5.5.2 Exterior Boundary Value Problems . . . . . . . . . . . . . . . . . 264
5.5.3 Transmission Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
5.6 Solution of Integral Equations via Boundary Value Problems . 265
5.6.1 The Generalized Representation Formula for Second
Order Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
5.6.2 Continuity of Some Boundary Integral Operators . . . . . 267
5.6.3 Continuity Based on Finite Regions. . . . . . . . . . . . . . . . . 270
5.6.4 Continuity of Hydrodynamic Potentials . . . . . . . . . . . . . 272
5.6.5 The Equivalence Between Boundary Value Problems
and Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
5.6.6 Variational Formulation of Direct Boundary Integral
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
5.6.7 Positivity and Contraction of Boundary Integral
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
5.6.8 The Solvability of Direct Boundary Integral Equations 291
5.6.9 Positivity of the Boundary Integral Operators
of the Stokes System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
5.7 Partial Differential Equations of Higher Order . . . . . . . . . . . . . . 293
5.8 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
5.8.1 Assumptions on Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
5.8.2 Higher Regularity of Solutions . . . . . . . . . . . . . . . . . . . . . 299
5.8.3 Mixed Boundary Conditions and Crack Problem . . . . . 300
6. Introduction to Pseudodifferential Operators . . . . . . . . . . . . . 303
6.1 Basic Theory of Pseudodifferential Operators . . . . . . . . . . . . . . 303
6.2 Elliptic Pseudodifferential Operators on Ω ⊂ IR
n
. . . . . . . . . . . 326
6.2.1 Systems of Pseudodifferential Operators . . . . . . . . . . . . . 328
6.2.2 Parametrix and Fundamental Solution . . . . . . . . . . . . . . 331
6.2.3 Levi Functions for Scalar Elliptic Equations . . . . . . . . . 334
6.2.4 Levi Functions for Elliptic Systems . . . . . . . . . . . . . . . . . 341
6.2.5 Strong Ellipticity and G˚arding’s Inequality . . . . . . . . . . 343
6.3 Review on Fundamental Solutions . . . . . . . . . . . . . . . . . . . . . . . . 346
6.3.1 Local Fundamental Solutions . . . . . . . . . . . . . . . . . . . . . . 347
6.3.2 Fundamental Solutions in IR
n
for Operators
with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 348
6.3.3 Existing Fundamental Solutions in Applications . . . . . . 352
7. Pseudodifferential Operators as Integral Operators . . . . . . . 353
7.1 Pseudohomogeneous Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
7.1.1 Integral Operators as Pseudodifferential Operators
of Negative Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
7.1.2 Non–Negative Order Pseudodifferential Operators
as Hadamard Finite Part Integral Operators . . . . . . . . . 380
7.1.3 Parity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
7.1.4 A Summary of the Relations between Kernels
and Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
7.2 Coordinate Changes and Pseudohomogeneous Kernels . . . . . . . 394
7.2.1 The Transformation of General Hadamard Finite Part
Integral Operators under Change of Coordinates . . . . . 397
7.2.2 The Class of Invariant Hadamard Finite Part Integral
Operators under Change of Coordinates . . . . . . . . . . . . . 404
8. Pseudodifferential and Boundary Integral Operators . . . . . . 413
8.1 Pseudodifferential Operators on Boundary Manifolds . . . . . . . . 414
8.1.1 Ellipticity on Boundary Manifolds . . . . . . . . . . . . . . . . . . 418
8.1.2 Schwartz Kernels on Boundary Manifolds. . . . . . . . . . . . 420
8.2 Boundary Operators Generated by Domain
Pseudodifferential Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
8.3 Surface Potentials on the Plane IR
n − 1
. . . . . . . . . . . . . . . . . . . . . 423
8.4 Pseudodifferential Operators with Symbols of Rational Type . 446
8.5 Surface Potentials on the Boundary Manifold Γ . . . . . . . . . . . . 467
8.6 Volume Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
8.7 Strong Ellipticity and Fredholm Properties . . . . . . . . . . . . . . . . 479
8.8 Strong Ellipticity of Boundary Value Problems
and Associated Boundary Integral Equations . . . . . . . . . . . . . . . 485
8.8.1 The Boundary Value and Transmission Problems . . . . . 485
8.8.2 The Associated Boundary Integral Equations
of the First Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
8.8.3 The Transmission Problem and G˚arding’s inequality . . 489
8.9 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
9. Integral Equations on Γ ⊂ IR
3
Recast
as Pseudodifferential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
9.1 Newton Potential Operators for Elliptic Partial Differential
Equations and Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
9.1.1 Generalized Newton Potentials for the Helmholtz
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
9.1.2 The Newton Potential for the Lam´e System. . . . . . . . . . 505
9.1.3 The Newton Potential for the Stokes System . . . . . . . . . 506
9.2 Surface Potentials for Second Order Equations . . . . . . . . . . . . . 507
9.2.1 Strongly Elliptic Differential Equations . . . . . . . . . . . . . . 510
9.2.2 Surface Potentials for the Helmholtz Equation . . . . . . . 514
9.2.3 Surface Potentials for the Lam´e System . . . . . . . . . . . . . 519
9.2.4 Surface Potentials for the Stokes System . . . . . . . . . . . . 524
9.3 Invariance of Boundary Pseudodifferential Operators . . . . . . . . 524
9.3.1 The Hypersingular Boundary Integral Operators
for the Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . 525
9.3.2 The Hypersingular Operator for the Lam´e System . . . . 531
9.3.3 The Hypersingular Operator for the Stokes System . . . 535
9.4 Derivatives of Boundary Potentials . . . . . . . . . . . . . . . . . . . . . . . 535
9.4.1 Derivatives of the Solution to the Helmholtz Equation 541
9.4.2 Computation of Stress and Strain on the Boundary
for the Lam´e System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
9.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
10. Boundary Integral Equations on Curves in IR
2
. . . . . . . . . . . . 549
10.1 Fourier Series Representation of the Basic Operators . . . . . . . . 550
10.2 The Fourier Series Representation of Periodic Operators
A ∈ L m
c
(Γ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
10.3 Ellipticity Conditions for Periodic Operators on Γ . . . . . . . . . . 562
10.3.1 Scalar Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
10.3.2 Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
10.3.3 Multiply Connected Domains . . . . . . . . . . . . . . . . . . . . . . 572
10.4 Fourier Series Representation of some Particular Operators . . 574
10.4.1 The Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 574
10.4.2 The Lam´e System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
10.4.3 The Stokes System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
10.4.4 The Biharmonic Equation . . . . . . . . . . . . . . . . . . . . . . . . . 582
10.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
A. Differential Operators in Local Coordinates
with Minimal Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
Another Mathematics Books
Download
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment