In this blog, 25.000 books will be uploaded, so far more than 1400 books are available. Books, will be added daily, please check this blog daily.
Thursday, December 8, 2011
Applied Mathematical Methods In Theoretical Physics
Contents
Preface IX
Introduction 1
1 Function Spaces, Linear Operators and Green’s Functions 5
1.1 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Orthonormal System of Functions . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Eigenvalues and Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 The Fredholm Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Self-adjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Green’s Functions for Differential Equations . . . . . . . . . . . . . . . . . 16
1.8 Review of Complex Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.9 Review of Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Integral Equations and Green’s Functions 33
2.1 Introduction to Integral Equations . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Relationship of Integral Equations with Differential Equations and Green’s
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Sturm–Liouville System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Green’s Function for Time-Dependent Scattering Problem . . . . . . . . . . 48
2.5 Lippmann–Schwinger Equation . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6 Problems for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3 Integral Equations of Volterra Type 63
3.1 Iterative Solution to Volterra Integral Equation of the Second Kind . . . . . 63
3.2 Solvable cases of Volterra Integral Equation . . . . . . . . . . . . . . . . . 66
3.3 Problems for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4 Integral Equations of the Fredholm Type 75
4.1 Iterative Solution to the Fredholm Integral Equation of the Second Kind . . 75
4.2 Resolvent Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Pincherle–Goursat Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Fredholm Theory for a Bounded Kernel . . . . . . . . . . . . . . . . . . . . 86
4.5 Solvable Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.6 Fredholm Integral Equation with a Translation Kernel . . . . . . . . . . . . 95
4.7 System of Fredholm Integral Equations of the Second Kind . . . . . . . . . 100
4.8 Problems for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5 Hilbert–Schmidt Theory of Symmetric Kernel 109
5.1 Real and Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Real and Symmetric Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Bounds on the Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 Rayleigh Quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5 Completeness of Sturm–Liouville Eigenfunctions . . . . . . . . . . . . . . 129
5.6 Generalization of Hilbert–Schmidt Theory . . . . . . . . . . . . . . . . . . 131
5.7 Generalization of Sturm–Liouville System . . . . . . . . . . . . . . . . . . 138
5.8 Problems for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6 Singular Integral Equations of Cauchy Type 149
6.1 Hilbert Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2 Cauchy Integral Equation of the First Kind . . . . . . . . . . . . . . . . . . 153
6.3 Cauchy Integral Equation of the Second Kind . . . . . . . . . . . . . . . . 157
6.4 Carleman Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.5 Dispersion Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.6 Problems for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7 Wiener–Hopf Method and Wiener–Hopf Integral Equation 177
7.1 The Wiener–Hopf Method for Partial Differential Equations . . . . . . . . . 177
7.2 Homogeneous Wiener–Hopf Integral Equation of the Second Kind . . . . . 191
7.3 General Decomposition Problem . . . . . . . . . . . . . . . . . . . . . . . 207
7.4 Inhomogeneous Wiener–Hopf Integral Equation of the Second Kind . . . . 216
7.5 Toeplitz Matrix and Wiener–Hopf Sum Equation . . . . . . . . . . . . . . . 227
7.6 Wiener–Hopf Integral Equation of the First Kind and Dual Integral Equations 235
7.7 Problems for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8 Nonlinear Integral Equations 249
8.1 Nonlinear Integral Equation of Volterra type . . . . . . . . . . . . . . . . . 249
8.2 Nonlinear Integral Equation of Fredholm Type . . . . . . . . . . . . . . . . 253
8.3 Nonlinear Integral Equation of Hammerstein type . . . . . . . . . . . . . . 257
8.4 Problems for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
9 Calculus of Variations: Fundamentals 263
9.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
9.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
9.3 Euler Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
9.4 Generalization of the Basic Problems . . . . . . . . . . . . . . . . . . . . . 272
9.5 More Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
9.6 Differential Equations, Integral Equations, and Extremization of Integrals . . 278
9.7 The Second Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
9.8 Weierstrass–Erdmann Corner Relation . . . . . . . . . . . . . . . . . . . . 297
9.9 Problems for Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
10 Calculus of Variations: Applications 303
10.1 Feynman’s Action Principle in Quantum Mechanics . . . . . . . . . . . . . 303
10.2 Feynman’s Variational Principle in Quantum Statistical Mechanics . . . . . 308
10.3 Schwinger–Dyson Equation in Quantum Field Theory . . . . . . . . . . . . 312
10.4 Schwinger–Dyson Equation in Quantum Statistical Mechanics . . . . . . . 329
10.5 Weyl’s Gauge Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
10.6 Problems for Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Bibliography 365
Index 373
Another Mathematics Books
Another Physics Books
Download
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment